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Abstract Cutting, Delong and Nothelfer (2010) use statistical methods to investigate the evo-
lution of shot-length patterns in popular film. They argue, using what they call a ‘modified autore-
gressive index’ (mAR), that patterns are becoming increasingly clustered and also evolving towards
1/f structure, a pattern described in later publication as ‘like those that our minds may naturally
generate’. This paper shows that the interpretation of the mAR index is wrong. It is also shown
that that the results concerning 1/f patterns can be interpreted in an equally plausible and much
less ‘exciting’ way. That is, although there are undoubtedly interesting temporal patterns in the
shot length structure, they can’t be interpreted in terms of the ‘evolution of Hollywood film’ in the
sense intended in the original paper.

1 Introduction

Cinemetrics has been characterized as an online research tool to facilitate the scholarly study
of film editing. There is an emphasis on cutting rates as evidenced by shot-lengths (SLs) and
the relationship between cutting rates and the history of film is singled out as a potential area
of study (Bosse, Tsivian, and Brisson, 2011). It involves the analysis of quantified ’filmic’ data
using statistical methods that are, perhaps, alien to a majority of film scholars. Many of the ideas
currently being explored can be traced back to Barry Salt’s 1974 paper Statistical Style Analysis of
Motion Pictures, and early applications are to be found in Salt’s own work, particularly his book
Film Style & Technology: History & Analysis (2009), now in its third edition but first published
in 1983.

Salt’s emphasis on quantification as a basis for the objective study of film style has been de-
scribed, in a review by Abel (1989, p. 48), as ‘in the tradition of British empiricism’ or what Salt
calls ‘Scientific Realism’. This has echoes of the quantitative revolutions in Geography and Archae-
ology that were well underway when Salt first published. These ’revolutions’ had a considerable
impact on practice; quantifiers were often labeled ‘positivists’ - as a badge of pride by themselves
or as a term of abuse by those convinced that the advocacy of ’scientific’ study dehumanized their
discipline.

In film studies, by contrast, my impression is that the idea of quantification has met largely with
indifference and/or incomprehension rather than enthusiasm or vehemence, and Salt’s methodolo-
gies were not much emulated. This is suggested as much in the preface to The Numbers Speak, an
essay published for the first time in Salt (2006, pp. 389-397) but based on work undertaken much
earlier that develops, in mathematical language, an idea first broached in Salt (1974). Specifically
he notes that the work was based on research undertaken over a long period that had been dropped
at one point but which he now thought important enough to publish ‘given that there is a new
interest from other people in shot length statistics’ (Salt, 2006, p. 388).

These ‘other people’ include the developers of the Cinemetrics website. The measurement
software on the website enables users to record the SLs for individual films, and a database of
several thousand user-contributed analyses now exists. There are several consequences of this
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development; it is much easier to generate data than was previously the case; there is a lot more
of it; and it is ’richer’ than was often the case for earlier data collection. The obvious question is
what can you usefully do with it, and how?

Historically the average shot length (ASL) has been the most widely used quantitative measure
of film style. This is simple to understand and, importantly, comparatively simple to measure. All
you need to know is the duration of a film and the number of shots in it - it is not necessary to
know the individual SLs. This restricts the kind of analysis which can be done, though these are
still informative. There is, for example, a nice graph in Salt (2009, p. 378) showing the year-by-
year variation in (mean) ASLs for 7792 American films between 1930 and 2006. It shows that the
comparatively slow cutting rate associated with the advent of sound in the late 1920s increased
fairly rapidly to the mid-1930s but then rose again to a peak (1947-1955) after which there was
a steady decline to about 1975, some flattening out for the next 10 years, then a further steady
decline.

This example has been chosen to illustrate what, as a statistician, I view as the major benefit
of quantification and the availability of large data sets, and that is pattern recognition. Once
pattern is recognized it invites explanation and that is the province of the film scholar rather than
the statistician. The statistical analysis of quantified filmic data is a means rather than an end
but has the potential for revealing non-obvious pattern that demands explanation.

That measuring individual SLs allows ‘richer’ analysis is simply because much more can be
done than computing an ASL. For example it becomes possible to compute the median shot length.
It has been argued that this rather than the ASL is a better measure of ‘film style’ that should
be used in preference to the ASL (Redfern, 2012a). Others have questioned this, but the point is
that a debate is possible because data are now available.

Although, from a purely statistical point of view, many applications to quantified filmic data
involve fairly simple methodology, more complex pattern seeking methods have recently been
explored in a series of discussion papers on the Cinemetrics website. Many of these involve both
the characterization of SL structures within films and their comparison across films.

One of the most interesting and ambitious papers using cinemetrics analysis to have been
published is that of Cutting, DeLong and Nothelfer (2010) on the evolution of Hollywood film.
It appears to have everything that might be wished for in a cinemetric study. The statistical
methodology used is complex - not a merit in itself but needed for the purpose intended. The
methodology appears to identify non-obvious patterning in the data for which a filmic interpre-
tation is possible and psychological theories of attention can be advanced by way of explanation.
The paper has attracted attention beyond that normally enjoyed by a scholarly publication.

As well as interesting I think the paper is also potentially important, but there is a problem
with the interpretation of one of the statistics used that undermines the conclusions drawn from
it. It is additionally possible to reinterpret other results in the paper in a way that leads to rather
less ‘eye-catching’ conclusions than those reported.

This paper is an attempt to explain what the statistical issues are and how they affect the
conclusions that have been drawn, and subsequently repeated in the literature. There are inter-
esting patterns in the data, but these can be more simply explained than hitherto and raise other
questions about the evolution of Hollywood film.

2 Evolution in Hollywood film

Cutting, DeLong and Nothelfer (2010) (henceforth CDN) develop an index of SL patterning that
they claim, over time, shows that shots in films have become increasingly clustered into packets of
shots of similar length. This is described as ‘evolution’; in their words ‘film editors and directors
have incrementally increased their control over the visual momentum of their narratives, making
the relations among shot lengths more coherent over a 70-year period’.

The analysis is linked with claims that ‘the shot structure in films has been evolving towards
1/f spectra’. This last claim is repeated and elaborated on in later publications using less technical
language. Thus Delong et al. (in press) state that the earlier analyses ‘lead us to believe that
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film may be evolving; the characteristics of film may change over time to better serve cognitive
mechanisms like attention’. Smith et al. (2012, p. 109) explain this as meaning that ‘whole films
are characterized by rhythmic fluctuations that appear to guide viewer attention’ and that ‘the
shot-duration patterns of film might increasingly be like those our minds may naturally generate’.
The statement in the same paper that since about 1960 ‘the shot lengths of films analyzed as
sequences across entire films have increasingly approached a 1/f pattern’ is not qualified in any
way.

These claims have attracted attention beyond the academic sphere. The New Scientist ran an
article entitled Solved: The Mathematics of the Hollywood Blockbuster and a web search will bring
up several similarly entitled items. CDN do not make such exaggerated claims. Nevertheless,
Cutting’s remark, in the context of a debate with Barry Salt on the Cinemetrics ‘Discussion
Board’, ‘that the news was that there was an increasing trend towards 1/f over time. Insofar as
we know, there is no trend from near randomness towards 1/f that has been traced in any domain
in any other science, let alone any other art form’ is a striking claim that merits careful critical
scrutiny.

The analyses in CDN can be broken down into four stages.

1. The SL data for a film are converted, by statistical methods, into indices measuring some
property of interest.

2. Statistical methods are used to identify temporal patterning in the indices.

3. A ‘filmic’ interpretation is offered for the patterns detected, namely they are evolving.

4. Psychological theories of attention are offered to ‘explain’ this evolution.

In this progression from data collection, through processing, statistical analysis, pattern recog-
nition and interpretation in substantive (filmic and psychological) terms it is inevitably the higher-
level and novel substantive claims that attract attention. They rest, however, on the statistical
foundations at stages 1 and 2. Should these be unsound the whole edifice is unsafe. The argument
in the present paper is that the foundations are unsound. The rest of the paper attempts to
explain why.

3 Methodology

A lot of the interest in applied time-series analysis, in other areas of application, lies in predicting
future observations from past observations. This is often done in terms of statistical models that
postulate a systematic relationship between a current observation and past observations, to which
is added a random (or error, or disturbance) term.

There are many ways of specifying the systematic and random components and the way they
are combined, but commonly linear models are used. There is also considerable choice among
these; one of the simplest, and the only one of concern here – it is the one used in CDN – is
the autoregression (AR) model, which assumes that an observation can be predicted from a linear
combination of the observed values of previous observations. The order, or index, of the AR model
is the number of past terms needed for satisfactory prediction.

Pairs of adjacent observations are separated by a lag of h = 1; the autocorrelation coefficient
at lag 1, ρ1, is the correlation between all such pairs; ρ2 is the correlation between pairs separated
by one intervening observation, and so on; ρ0 = 1. The plot of ρh against h is the autocorrelation
function (ACF).

The partial autocorrelation coefficient at lag h, αh, is the correlation between pairs of observa-
tions after factoring out the effect of other intervening terms. It can be thought of as measuring
the ‘predictive power’ that still remains after removing the effect of observations closer to the value
to be predicted. A variety of algorithms exist for calculating αh; α1 = ρ1, and at greater lags
the partial autocorrelations can be defined recursively in terms of the autocorrelations, but other
methods can be used. The plot of αh against h for h ≥ 1 is the partial autocorrelation function
(PACF).
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Faced with real data and a plethora of models that might be used to describe them, choosing
an appropriate model is not an easy task. The ACF and PACF are useful diagnostic tools. The
PACF is widely used to assess whether an AR model is appropriate. The idea is that so long as
observations at lag h (and those with smaller lags) retain predictive power the calculated αh will
be ‘significantly’ large and will drop sharply to non-significant values once they no longer have
predictive value. The lag after which the drop occurs defines the order of the AR model.

Identification of where the ‘drop occurs’ is frequently not this obvious and statistical aids can
be used. In both CDN and Redfern (2012b), who has reanalyzed the CDN data, their initial
analyses examine αh sequentially to see if the value exceeds 2/

√
n and identify the order of the

AR model at the lag beyond which partial autocorrelations cease to be significant. The cut-off
criterion, where n is the number of shots in the film, is based on the idea that (given appropropriate
theoretical conditions) observed αh > 2/

√
n differ from zero at the 5% level of significance.

One other idea needs to be explained before examining the methodology of the two papers in
detail, and that is detrending. Methods of the kind described above for model identification can
be invalidated if there are strong trends in the data. One way to avoid problems posed by this
is to detrend the data by first fitting an appropriate model of trend and subtracting the values it
predicts for the series before proceeding further. Unlike CDN, Redfern (2012b) does this and his
approach is emulated in our analyses.

In cinemetric studies prediction is not of interest; rather, the hope is that the order of the AR
models identified will provide an insight into the structure of temporal variation of SLs within
films, and the way structure has changed over a period of time. Specifically, the order of an AR
process has been equated with the extent to which shots tend to be clustered with others of similar
length, with higher orders associated with greater clustering1.

Apart from detrending, the other difference in the CDN and Redfern papers lies in the way
correlations are measured. CDN measure correlations using the (Pearson’s product-moment)
correlation coefficient whereas Redfern uses Spearman’s rank-order correlation coefficient. This is
equivalent to transforming the (detrended) SL data to ranks and is undertaken in the interests of
‘robustness’, to guard against problems caused by the skewed nature of SL distributions and the
presence of outliers. It is argued that will lead to under-estimation of the ‘true’ order of an AR
model. It may be remarked that log-transformation of the data is likely to achieve the same ends;
the different possible data treatments do not affect the conclusipns of this paper. Our analysis
emulates Redfern in using only 134 of the 150 films studied in CDN, to avoid problems posed by
SLs recorded as zero or negative.

Using the pacf function in R, Figures 1 and 2 show some results for The Informer (1935) and
The Grapes of Wrath (1940). The plot to the left of Figure 1 is for the unmodified SLs, similar to
those that form the basis of analysis in CDN. The plot to the right, using rank-transformed data
after linear detrending, illustrates Redfern’s (2012b) approach. Figure 2 is similar, except that
the left-hand plot shows results after detrending the SLs and before rank-transformation.

The horizontal dashed lines in all plots are at 2/
√
n, so for The Informer would identify AR

models of order 0 (to the left) and 2, following the methodologies just described. For The Grapes
of Wrath orders of 1 and 3 are indicated. Suppressing any concern about these interpretations for
a moment, it is sufficient to note that the use of detrending and rank-transformation does make a
difference to the results.

CDN express dissatisfaction with this approach for several reasons and develop what they call
a modified AR index (mAR). One motivation for this was a feeling that films with smaller values
of n, and therefore larger 2/

√
n, were ‘penalized’ in the sense that this ‘generated smaller AR

indices’. Another motivation, of greater consequence, was based on the observation that ‘there
can be much noise in partial-autocorrelation functions’. This arguably suggests that for many films
an AR model may be inappropriate; however, CDN deal with this issue by using an ‘exponential’
model to smooth the PACF. This was coupled with a fixed rather than variable bound used to
determine, via its intersection with the fitted curve, the mAR index. This approach is adopted

1 For a discussion of the issue of clustering and reasons for it see the debate between Salt and Cutting on the
Cinemetrics website, previously referenced, particularly Salt’s contribution.
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Fig. 1: PACFs for The Informer before linearly detrending the SL data and after linear detrending
and a subsequent rank-transformation.

in Redfern’s analysis2. This replaces the discrete AR index with a continuous mAR index and
introduces the fundamental problem with which much of this paper is concerned.

The fitted lines in both papers, and shown on the graphs, are obtained from an ‘exponential’
model of the form

αh = (1 + h)−β .

The nls function in R was used to fit the models in this paper, with results identical to those in
Redfern (2012b).

4 Commentary

This section addresses some purely statistical concerns about the merits of the mAR index. In-
terpretational issues are considered in the next section.

1. The appropriateness of an AR model is questionable for many of the films. The PACF often
bears little resemblance to what might be expected from an ‘ideal’ AR model (e.g., the left-
hand panels of Figures 1 and 2). The ranked data, for the examples shown, are better and
this is more generally, though by no means universally, the case.

2. CDN’s comment about ‘much noise in partial-autocorrelation functions’, appears to acknowl-
edged this. Estimating an mAR via the fitting of a smoothed ‘exponential’ curve disguises
rather than deals with the problem of inappropriateness in the first instance. An exponential
model is often not appropriate, given the patterns in the data in many cases.

This can be approached both empirically and theoretically. Most simply, the exponential
model is suited to data that, allowing for random variation, exhibit a pattern of decay. None
of the plots in the figures really do this. Of the three PACFs shown for illustration in Figure
1 of CDN, fitting an exponential to King Kong looks reasonable, but not so Detour. If an AR
model really is appropriate, then a PACF pattern with a fairly obvious ‘drop’ is expected,
and in this case an exponential model should not be expected to be appropriate. The PACF
for Ordinary People in Figure 1 of CDN is a case in point; it might be fairly interpreted as

2 In CDN the mean of n in their sample of films replaces n in 2/
√

n; Redfern prefers the median to the mean.
These fixed cut-off criteria are represented by the solid horizontal lines in the figures. There is little difference,
0.065 using the mean and 0.061 using the median.
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Fig. 2: PACFs for The Grapes of Wrath after linearly detrending the SL data and after a sub-
sequent rank-transformation. Horizontal lines are bounds, used to identify alternative AR
indices from a plot.

consistent with an AR index of 2, but it can then be argued that fitting an inappropriate
exponential model to get an mAR of 2.47 is unnecessary.

3. A perhaps minor point is that mAR estimates will be affected by the sample of films used.
The mean average shot length in films has been declining over the last 40 years or more,
with the consequence that modern films will tend to have rather more shots than older ones
from, say, the 1930s and 1940s. This means that while the PACF function for a film will
remain unchanged the mAR calculation will depend on the sample of which it is a part,
being somewhat larger for a sample of mainly modern films than one spread evenly over a
much longer period.

What’s being claimed here is that many film SL patterns are not adequately described by an
AR model. If they are not, it is difficult to see what the mAR is measuring. If patterns can be
adequately described by an AR model the mAR would seem to be redundant. The problem with
mARs is, however, worse than this..

5 What does the mAR really measure?

The implication of the above is that interpretations offered for indices for any particular film, and
patterns in them over time, can be called into question. The analysis now described was intended
to exploit the information in the αh without imposing on them an interpretation in terms of
an underlying AR model, or manipulating them in several stages to get an index of uncertain
interpretability. The approach, based on principal component analysis (PCA), led to a rather
simple conclusion that allows the PCA methodology that revealed it to be jettisoned3. The idea
was to apply PCA to the unstandardised αh, and see if there was any pattern in plots of the PCA
scores, against each other, or external factors such as date or genre of the films. This is in the
same spirit in which the various AR indices have been used.

3 PCA is a standard technique described in any good text on multivariate analysis. It produces new variables –
principal components or PCs, that are linear combinations of the αh, that are uncorrelated and explain successively
decreasing amounts of variation in the data. It is hoped that some of the PCs are ‘interpretable’. Only the first
PC was, and it was largely determined by α1 so patterns can be explored using the latter, forgetting about the
mechanism used to reach this conclusion.
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Fig. 3: To the left plots against date of different ‘indices’ intended to measure aspects of SL struc-
ture in films, for different data treatments and methodologies. Plots are based on loess
smooths with a span of 3/4 using localized robust quadratic regression fitting. The right-
hand plot is of α1 and mAR for ranked detrended SLs.

Only the first principal component (PC1) seemed obviously interpretable; in particular a plot
of scores on PC1 against date showed a pattern remarkably similar to that of Figure 3(b) in
Redfern (2012b) for his mAR index based on ranked SLs. The pattern doesn’t depend on the
number of lags used in the PCA. The first PC is largely determined by the value of α1 and this is
all that’s needed to obtain the same pattern as in Redfern’s analysis.

This is illustrated in the left-hand panel of Figure 3 which contrasts the pattern for the original
PCA analysis, the first partial autocorrelation coefficient (of ranked, linearly detrended data),
Redfern’s (2012b) mAR index for ranked SLs and, for good measure, his mAR index for the
detrended but unranked data. Scales for the ordinates are not, for the most part, comparable so
have been omitted; plots are overlaid to emphasise the similarity of pattern, but nothing is to be
read into the distance between lines4. The results for logged SLs, subsequently detrended, are
almost identical to those for ranked detrended data and not shown. The curve shown for α1 for
logged data does not involve trend removal of any kind.

An obvious question to ask is why are the results so similar. It suffices to concentrate on
a comparison between the first partial autocorrelation coefficient for the ranked detrended data,
and the mAR index for the ranked data. The strength of the relationship is illustrated in the
right-hand plot of Figure 3, where the genre of a film is also indicated.

Superficially the methodology used to arrive at these very similar results looks rather different.
Use of α1 for showing changing structure over time is pehaps an obvious thought anyway, but was
indicated here by the results of the PCA. The PCs are linear combinations of the αh only the first
of which is important here. From the exponetial model previously given, and for a fixed cut-off
point, c,

mAR = cβ − 1

so that any variation in the mAR depends on variation in β which is estimated by non-linear least
squares methods and is a function of all the 20 lags used. The equivalence between the results
suggests that this estimate is very strongly dominated by the magnitude of α1 but this is less
transparent than for the PCA.

4 The lines are loess smooths using a span of 0.75, and robust quadratic regression models for the localized fitting
involved.
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Very heuristically, it can be suggested that the larger α1 is to begin with, the ‘longer’ the fitted
curve is likely to take to fall to its limit of zero, and the larger the mAR, where the curve intersects
the fixed cut-off boundary, will be. That this happens can be confirmed via simulation using the
arima.sim function in R, simulating 1000 observations from an AR model of order 1 for different
values of α1, several times for each value. Thus for α1 = 0.5 and ten simulations mAR indices in
the range about 3.45-4.00 are obtained – call a typical value 3.7. Reduce α1 to 0.1 in steps of 0.1
and typical values are 3.1, 2.5, 1.7 and 1.2, with 0.8 for α1 = 0.05.

This is a very small experiment and there is a lot of variation about the typical values quoted,
but the pattern is clear enough. If 134 such analyses were to be performed, varying α1 between
0.05 and 0.50, and assigning ‘dates’ to each simulation with later dates corresponding to higher
α1, plots like those to the left of Figure 3 and more linear might be expected. This would show
an ‘evolution’ in mARs that, if the interpretation of CDN was accepted, would be interpreted as
an increase in clustering into packets of shots of similar length.

It cannot be so interpreted. In CDN the AR index is replaced by the mAR to deal with the fact
that the real data often does not look like an AR process. By contrast, here the simulated data,
by construction, are from an AR process, so there is no need for an mAR and no ‘evolution’ since
the processes are all of the same order. The suggestion of ‘evolution’ in the simulated example
is entirely an artefact of the methodology used to construct mARs, whereby larger α1 generate
larger mARs, regardless of the true order of the underlying process.

The above is based on the simulation of AR models of order 1. It is more tedious to investigate
models of higher order, as a lot more variation in the parameters that define a model is possible.
I have not looked at this systematically, but it is easy enough, using simulated data, to show that
mARs more nearly reflect the values of the larger partial autocorrelations present than the order of
the underlying process. As a rough illustration of the kind of variation to expect, using detrended
and ranked data, there are 49 films with an AR index of 2, whose mARs range from 1.94 to 7.57,
and 21 films with an AR index of 3 whose mARs vary between 2.45 and 5.79.
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Fig. 4: Plots of α (‘slope’) against date using the model of 1/f patterning developed in Cutting et
al. (2010) and a loess smooth of the same data. See the text for detail.

Only a brief discussion of 1/f analyses is attempted, using the results reported in the supple-
ment to CDN. They smooth the power spectrum for the (standardized) SLs of a film using 7-10
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estimated points, to which a line determined by a parameter, α, is fitted. The closer α is to 1
the closer the film is to exhibiting 1/f patterning. The estimated values of α are plotted against
date, a line through the points fitted with a quadratic regression model, and ‘evolution’ towards
1/f patterning claimed on the basis that the right ‘arm’ of the fitted model is moving smoothly
upward towards 1. This is illustrated in Figure 4 along with a loess smooth to the same data, of
the kind used in the previous figure5.

It can be remarked in passing that, on the basis of Figure 3 in CDN, the propriety of fitting a
linear model to estimate α for some films can be questioned; the data do not have the shape to
merit such a fit. Even so, and ignoring this, the loess smooth to the data in Figure 4 shows no sign
of ‘evolution’, the short period beween about 1970 and 1990 being the only one when anything
of the sort was happening. The question has been asked (by Salt) as to why, if there has been
an evolution to 1/f patterning since 1935, we aren’t closer to it. A perfectly plausible answer is
that no such evolution is taking place. I am not claiming that the loess smooth is ‘right’ and the
quadratic smooth ‘wrong’ – there is too much variation in the data for either to be regarded as
compelling evidence for a ‘trend’ of any kind. That the data can tolerate this kind of variation
in the fitted lines, though, is reasonably compelling evidence that claims for an evolution to 1/f
patterning cannot be strongly pressed, if at all.

6 Discussion

The scope and ambition of the work initiated in CDN is impressive, technically demanding at the
statistical level, and leads to some ‘eye-catching’ conclusions. Their paper concluded with the claim
that the study had ‘demonstrated that the shot structure in films has been evolving toward 1/f
spectra’, liberally interpreted in parts of the media as relating to the secrets of making a ‘Hollywood
blockbuster’. More seriously, and soberly, the claims of the CDN paper have been repeated in
subsequent academic literature. The present paper shows that they cannot be sustained.

As far as the evidence for ‘evolution’ in terms of clustering into packets of shots of similar
length goes, the underlying assumption that fitting AR models is appropriate seems not to have
been questioned. The comment in CDN that PACFs can exhibit a lot of ‘noise’ might be read as
a tacit admission that there are problems. Even if the mAR can be interpreted as a continuous
analog of the AR index it is of no value if the process is not AR to begin with.

More seriously, even if an AR model is valid, the mAR does not measure what is claimed
for it. Rather than measuring the order of an AR process, interpreted in turn as a measure of
the degree of clustering, what it actually appears to be is a surrogate measure for the (partial)
autocorrelation at the first lag. This only provides information on whether the process is of order
zero or not. Processes of the same order can give rise to entirely different mARs, and processes of
different orders can give rise to the same mAR. The mAR is of no value as a diagnostic tool for
the order of an AR process.

What this means is that the interpretation of analyses based on the patterning of mARs over
time - whatever these patterns might be - that treats the mAR as indicative of clustering in the
manner claimed cannot be sustained. Neither the mAR pattern (however the mAR is interpreted)
nor that of the slopes associated with 1/f ratios, can be unequivocally interpreted as indicative
of evolution if by this is meant a continuing upward trend in the indices involved. If the data are
allowed to speak without having a story (i.e. linear or quadratic fit) imposed on them their tale,
if any, is of evolution having ’stalled’ over the last 20 or 30 years.

Figures 3 and 4 do exhibit pattern but not of a straightforward evolutionary kind. The patterns
in Figure 3 can be interpreted in terms of variation in the first-order autocorrelation coefficient.
The interpretation of this raised its head in interchanges in the Salt/Cutting debate. The patterns
over time for the mAR and 1/f statistics claimed in CDN mirror, inversely, those of the ASL which
has been ‘evolving’ in the form of a fairly steady decrease, in its mean, over most of the period

5 For consistency the 134 films analyzed elsewhere in this paper have been used. There are slight differences
between the figure and Figure 2(c) in CDN as a consequence, but if all 150 are used the loess curve suggests, even
more strongly, that ‘evolution’ is not occurring.



6 Discussion 10

from 1950 on. Salt wondered about the nature of the relationship between the ASL, mAR and
1/f statistics, relating this to variation in the Lag-1 autocorrelation. Cutting, in his reply, stated
that ‘Lag-1 data alone can be misleading’ but his subsequent advocacy of the mAR as a superior
measure of clustering fails with the demonstration that the mAR is essentially a surrogate for the
Lag-1 autocorrelation. Salt proposed an heuristic argument, centered on action films, that there
were ‘likely to be more strings of shots of nearly the same length’ (i.e. clustering) as the ASL
decreased. The whole discussion, though, is predicated on the assumption that evolution of some
kind is taking place, and while this may be true for the ASL the argument presented in this paper
is that it is not true of the mAR (Lag-1 autocorrelation) or 1/f ratio.

The pattern of mean ASL against year for US feature films is shown in Salt (2009, p. 278). The
Lag-1 autocorrelation might be re-interpreted as an index of clustering, and in a sense this would
‘rescue’ one of the interpretive tools in CDN by replacing the mAR with the Lag-1 autocorrelation
so interpreted. However, Salt’s argument for an association between clustering and the ASL only
‘works’ up to about 1990 and for mean ASLs down to about 6.5. The mean ASLs vary around 7
to 6.5, with a slight decline from about the mid-1970s to 1990 then show a sharp decrease. This
sharp decrease is not mirrored by an increase in the patterns in Figures 3 and 4. Thus, conclusions
about ‘evolution’, of the form that have been claimed, are unsustainable even if we allow that the
mAR is a measure of clustering (albeit not in the manner intended in CDN). In the absence of
evolutionary patterns, attempts at rationalizing their existence in terms of theories of attention
need to be put on hold. The more interesting problem might be to explain why evolution that
mirrors that of the ASL is not taking place.

References

Abel, R. 1989: Split Decision. Quarterly Review of Film and Video 11, 43-57.

Bosse, A., Tsivian, Y., and Brisson, K. 2011: Cinemetrics: A digital laboratory for film studies.
http://dh2011abstracts.stanford.edu/xtf/view?docId=tei/ab-368.xml;query=Arno%20Bosse;brand=default
(accessed 5 November 2013).

Cutting, J.E., DeLong, J.E. and Nothelfer, C.E. 2010: Attention and the evolution of Hollywood
film. Psychological Science21, 440-447.

Redfern, N. 2012a: The average shot length as a statistic of film style.
http://www.cinemetrics.lv/dev/on statistics.php (accessed 5 November 2013).

Redfern, N. 2012: Robust estimation of the modified autoregressive index for high grossing films
at the US box office, 1935 to 2005.
http://nickredfern.files.wordpress.com/2012/11/nick-redfern-the-mar-index-for-hollywood-films1.pdf
(accessed 5 November 2013).

Salt, B. 1974: Statistical style analysis of motion pictures. Film Quarterly 28, 13-22.

Salt, B. 2006: Moving Into Pictures. London: Starword.

Salt, B. 2009: Film Style & Technology: History & Analysis (3rd edition). London: Starword.

Smith, T.J., Levin, D. and Cutting, J.E. 2012: A window on reality: perceiving edited reality.
Current Directions in Psychological Science 21, 107-113.


